
TECHNOLOGY FOR PRODUCTION OF RUBBER PRODUCTS. SOURCE MATERIALS. MORPHOLOGY. VULCANIZATION.

RUBBER – a product of vulcanization of rubber and sulfur with various additives (ingredients), which has high elastic properties in a wide range of temperatures

RUBBER PRODUCTS

Basic material on each rubber is caoutchouc

- Natural NR or
- Synthetic SR

It is crucial for:

- The plasticity of the Starting rubber mixture;
- The main physical Mechanical properties of The rubber material

Natural – NR	Product of the coagulation of the milky sap (latex) of the Brazilian rubber tree
Synthetic – SR	Product of polymerization of homogeneous or heterogeneous monomers Hydrocarbon, nitrile, sulfide, etctypes
MAIN TYPES OF SYNTHETIC rubbers with industrial significance	
Butadiene – SRB	By polymerization of butadiene in the presence of a catalyst - sodium
Butadiene – styrene – SBS	Joint product of polymerization of butadiene with stirol
Isoprene – SRI	Product of the catalytic polymerization of isoprene
Chloroprene	Product of the emulsion polymerization of chloroprene
Butadiene - nitrile	Joint product of polymerization of butadiene with acrylic acid nitrile
Ethylene – propylene	Non-crystallizable product of joint polymerization of ethylene with propylene
Siloxane	Silicon-organic polymer compounds

VULCANIZERS

VULCANIZATION – an essential process in the processing of rubber in rubber, whereby creating additional cross-links between linear macromolecules of rubber when heated under the action of special vulcanizing agents. VULCANIZARS – directly involved in the formation of cross links between macromolecules

- Sulfur the most widely used
- 5 % S soft tires with high elasticity and large- mesh structure
- Increasing the amount of S leads to compaction of the structure and getting rubber with high hardness
- in 32 % S maximum saturation formed solid material EBONITE

<u>ACCELERATORS</u> –accelerating the reaction of interaction of rubber with sulfur .

<u>FILLERS</u> – powder and tissues

Key features:

1. Modification of physical-mechanical properties and confer special properties of the tires – ACTIVE FILLELRS

2. Facilitate the processing of rubber mixtures

3. Lowering the sot of products - INACTIVE FILLERS

<u>SOLVENTS</u> – increasing fluidity of rubber compounds both in the amount of adhesives and filling in complicated forms – gasoline, benzene, ethylene

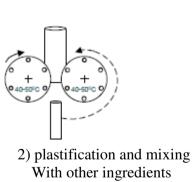
<u>PLASTICIZER</u> – 8-30% of the total – petrolatum, paraffin oils. Must be compatible with rubber, resistant to temperatures of processing and curing, non-toxic. Introduces in rubber to facilitate:

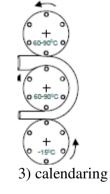
- 1. Mixed with other components
- 2. Filling the form of a rubber mixture in the molding process
- 3. Increasing the adhesive of the rubber to the tissues
- 4. Increasing the flexibility of the rubber

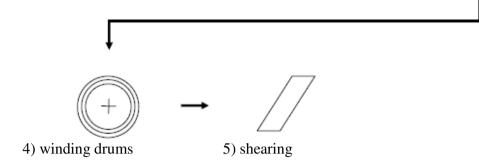
<u>RESISTANCE TO WEAR</u> – organic substances which increase the resistance of the rubber to the impact of oxygen from the air and the heat

Arising as a result of hysteresis losses in rubber deformation

<u>COLORS</u> – to giv a better appearance of the product and keep the light (radiations) aging as a part of the radiation absorbed.


- PREPARATION OF THE INGREAIENTS
- BATCHING
- MIXING
- DEVELOPMENT OF A SEMI-MANIFACTURED ARTICLES
- MOLDING

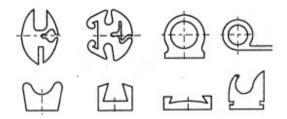

PREPARATION OF RAW MATERIALS


- Most difficult stage of technological process
- Rubber is cut into pieces and subjected to
- Decrystalization and plasticization

- Dry the powdery fillers

- The output component parts are Dosed and bring in sequentially. Sulfur is added last

> - The product mix in heated to 90 – 110 °C, to obtain a uniform distribution of ingredients

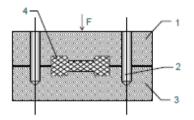

- The resulting calendered Mixture through heated rollers to Obtaining lists of raw Rubber with a thickness

- The sheets are rolled With tissue between layers To prevent them sticking together

- The semi-finished rubber compound Can stand up to 6 months at 5-20 °C.

MORPHOLOGY

<u>APPLICATION</u> – making a Unformed products – seals for windows and doors, rubber cords, Sealing parts for household appliances.



Types of rubber profiles obtained by injection

MORPHOLOGY

PRESSING

<u>APPLICATION</u> - for making Damper seal rings, Seals, collars, Plugs, bushings, etc..

1 – upper semi-form; 2- guide; 3 – down semi-form; 4 – rubber product

VULCANIZATION

VULCANISING

- HOT up to $150 \,^{\circ}\text{C}$
- COLD at room temperature
- Final operation of the process
- Thermal process in the retention device in structure forming a cavity temperature 130-150 °C
- Basic parameter time standing
- When the curing process to create cross-links between macromolecules of rubber
- The linear molecular structure becomes a space-mesh

THANK YOU!